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Abstract
Matrix factorization has been a key technique in learning

latent factor models for many applications in computer vision and
pattern recognition such as image annotation and collaborative
prediction. Specifically, in collaborative filtering problems, the
goal of matrix factorization is to predict the missing values based
on the low-rank factorization gained based on observed entries.
Among various algorithms, maximum margin matrix factorization
has been a successful approach to discriminative collaborative
filtering problems, where the input matrix is binary.

In this paper, we consider the problem of one-class discrimi-
native collaborative filtering, where the data matrix is binary and
only positive values can be observed, i.e. the entries of data ma-
trix can be either observed as positive or missing. Many real ap-
plications fall in this category. For example, given an image with
incomplete tag list: cat, tree, garden, we are only sure the image
has cat while not sure whether it has grass or not since the tag list
is incomplete.

To cope with this problem, one-class Maximum Margin Ma-
trix Factorization (one-class MMMF), which inherits the merits
of both the applicability of one-class SVM and the discrimina-
tive power of maximum margin matrix factorization, is proposed.
Extensive experiments conducted on both simulated toy data and
real benchmark image datasets demonstrate that the proposed
approach is considerably superior to the traditional approaches,
which simply assume unobserved entries as negative.

Introduction
Matrix factorization has been a key technique in learning la-

tent factor models for many applications in computer vision and
pattern recognition such as image annotation [9], collaborative
prediction [6] and clustering [3]. Typical matrix factorization
techniques seek to approximate a given data matrix by the prod-
uct of two low-rank matrices such that the difference between the
given matrix and its factorized form is minimized according to
some certain optimality criterion depending on specific applica-
tions [7, 8, 19, 14]. In many real world applications, especially
collaborative filtering problems such as tag completion [22], the
data matrix is only partially observed. Accordingly, a natural task
is to predict the missing values, for which matrix factorization is
one of the most popular and successful approaches. For example,
it achieves state-of-the-art performance on the large-scale Netflix
dataset [1], which has more than one hundred million non-zero
entries. Since matrix factorization does not require extra features
and relies on only the non-zero entries to make prediction for the

1These authors are now with Google. This work was done when these
authors were with Purdue University, West Lafayette.

Figure 1: SVM and one-class SVM versus MMMF and one-class
MMMF

missing entries, it can be easily applied to different domains with-
out careful engineering work of domain-specific features.

In typical setting of matrix factorization with missing en-
tries, the data matrix is assumed to be low-rank and all entries
can be of arbitrary real values. Factorization is conducted by
minimizing the loss function defined on the observed entries to-
gether with proper regularizer. In general, the observed entries
of data matrix can be of arbitrary real values. However, for cer-
tain specific applications, the observed entries may be subject to
various restrictions. For example, Nonnegative Matrix Factoriza-
tion (NMF) [7, 8] only allows the data matrix to be nonnegative.
Maximum Margin Matrix Factorization [19] considers the matrix
composed of entries with binary values, which is either−1 or +1.

One-Class Discriminative Collaborative Filtering In this
paper, we consider a special setting of collaborative filtering,
where only positive responses can be observed. In other words,
the entries of data matrix can be either missing or observed as
positive. For presentational convenience, here we consider the
case that the data matrix is of binary values (+1or−1) and only
+1 can be observed. However, it can be easily extended to cases
where positive observed values are discrete or even real. An ex-
ample observation matrix can be +1 ? +1 ?

+1 +1 ? ?
? ? +1 +1

 .

Many real problems fall into this category. For example, in
the setting of image annotation problem, the complete image-tag
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matrix X of size m× n is binary matrix, each column of which
corresponds to an image and each row corresponds to a possible
tag. In theory, the Xi j = +1 if the ith image contains an instance
of tag j, and Xi j = −1 if the image does not have an instance.
However, in computer vision problems, machine learning algo-
rithms usually rely on the training data which contains a set of
images with tags, which are usually incomplete. Once an image
is annotated with a label, say dog, the machine learning algorithm
will treat this image as a positive sample for the class dog. The
image is not annotated with label tree, however, it should not be
simply treated as a negative sample of class tree, since it can be a
missing label. Another example is the user preference prediction
for videos. If a user finishes watching a video, it is probably true
that the user likes the video. However, it does not mean the user
does not like it if he does not. An alternative explanation is that
he does not get exposure to that video at all. Not being observed
is not the same as being negative.

We name the problem of recovering the missing entries in the
binary matrix based on only positive observations in the matrix
as One-Class Discriminative Collaborative Filtering (OCDCF),
since traditional collaborative filtering techniques are not able to
cope with this setting.

When the data matrix is with missing values, many algo-
rithms simply treat the the missing values as negative [21, 10],
though the missing values do not necessarily mean they are neg-
ative values, and thus introduce systematic errors into the future
processing.

To cope with OCDCF, instead of assuming the unobserved
entries as negative, we propose a one-class Maximum Margin
Matrix Factorization (one-class MMMF) algorithm to predict the
missing entries, i.e., to predict the missing ones are either truly
negative or unobserved positive.

A piece of work close to our approach is one-class Support
Vector Machine (one-class SVM) [17]. Unlike conventional sup-
port vector machine (SVM) [20], which considers training sam-
ples from two distinct classes, one-class SVM considers the situa-
tion that the training samples are from one class and the prediction
task is to decide whether the testing samples are of the same class
or not. Maximum Margin Matrix Factorization (MMMF) [19]
introduces hinge loss into matrix factorization to incorporates it
with discriminative power. The analogy between SVM and one-
class SVM is very similar to the one between MMMF and our
proposed algorithm, named one-class Maximum Margin Matrix
Factorization, as shown in Figure 1.

This paper continues as follows: the related works, including
one-class SVM and MMMF, are reviewed in section . Proposed
one-class MMMF together with related optimization method is
detailed in section . Experimental results on both synthetic and
real benchmark datasets are presented in section ??, followed by
conclusion and discussion at the end.

Related Work
There are many work focusing on classifying samples of

different categories. However, only a few handle multiple-class
problem while only having samples from a single class [11, 13,
2, 15]. Among them, the classic one-class SVM is the most basic
and relevant methods to ours.

Also, there has been substantial previous work concentrating
on collaborative filtering, most of them are based on minimizing

the bregman divergence of given data matrix and its factoriza-
tion, although these loss functions are not suitable for the setting
of classification like discriminative collaborative filtering. Maxi-
mum matrix factorization introduces hinge loss into factorization
and thus is suitable for handling discriminative collaborative fil-
tering problems.

One-Class SVM
We briefly review the formulation of Support Vector Ma-

chine(SVM) and one-class Support Vector Machine (one-class
SVM) in this section, .

Given a set of samples with labels {(xi,yi)}n
i=1, where xi ∈

Rm is the feature vector of ith sample and yi is the correspond-
ing label (in the setting of binary classification, yi ∈ {−1,+1}),
conventional SVM learns a decision hyperplane w ∈ Rm by max-
imizing the margin between samples of different classes, and the
related optimization problem can be formulated as:

min
w

C
n

∑
i=1

max(0,1− yiwT xi)+
1
2
‖w‖2. (1)

The first term in (1) is the hinge loss, the second term is a
standard regularizer for w, and C is a parameter controlling the
tradeoff between the hinge loss and the regularization on w. The
bias term is omitted here to simplify the problem while keeping it
entirely general since it could be easily introduced as an additional
coordinate in the data.

Unlike SVM, which have samples from different classes in
training data, one-class SVM considers situations where only
samples belonging to a single class are available. Given n samples
of a same class, one-class SVM aims to find a compact ball such
that all samples lie in it. Combining the hinge loss and standard
regularizer, the problem can be formulated as:

min
w,ρ

1
2
‖w‖2

2 +
1

νn

n

∑
i=1

ξi−ρ

s.t. 〈w,xi〉 ≥ ρ−ξi

ξi ≥ 0 ∀i

(2)

where ν ∈ (0,1] is the tradeoff parameter. For both SVM and
one-class SVM, kernel trick can be easily introduced, and thus
the model is not necessary to be linear.

Maximum Margin Matrix Factorization
Maximum Margin Matrix Factorization (MMMF) copes

with discriminative collaborative filtering problems without look-
ing at domain specific features. Given a binary matrix X of size
m×n with missing values, MMMF aims to find low-rank approx-
imation of X , denoted as X̂ by minimizing a linear combination
the trace norm of X̂ , which serves as a regularizer to minimize the
rank approximately,and its hinge loss relative to X :

min
X̂∈Rm×n

‖X̂‖∑ +C ∑
(i, j)∈S

max(0,1−Xi jX̂i j), (3)

where ‖ · ‖∑ denotes the trace norm and S is set of indices of en-
tries being observed.
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Semi-Definite Programming (SDP) is introduced to optimize
the objective function above, however, it is very difficult for SDP
to scale up. The optimization problem can be simplified if the
rank of matrix X̂ is fixed to some small p. Then the optimization
problem of fixed low-rank MMMF can be reformulated as:

min
W∈Rm×p,H∈Rn×p ∑

(i, j)∈S
max(0,1−Xi j〈Wi,H j〉)

+α‖W‖2
F +β‖H‖2

F ,

(4)

where Wi is the ith row of W and H j is the jth row of H and α and
β are parameters controlling the strength of standard regularizers
on W and H.

Once W and H for learned, to predict Xi j, ∀(i, j) /∈ S, we can
easily rely on the corresponding Wi and H j .

One-Class Maximum Margin Matrix Factoriza-
tion

In this section, we describe the proposed one-class Maxi-
mum Margin Matrix Factorization (one-class MMMF) with the
formulation, optimization and discussion. This proposed algo-
rithm is designed to cope with the one-class discriminative collab-
orative filtering (OCDCF) problem, where only positive responses
can be observed.

Formulation
Given a matrix X ∈ Rm×n with missing values, let S denote

the set of observed entries in this matrix and all of these observed
entries are positive responses, i.e., Xi j = 1, ∀ (i, j)∈ S. Note when
(i, j) /∈ S, Xi j is not observed and it is not assumed to be negative.
Given these positive entries in S, the goal is to predict if Xi j should
be positive or not ∀ (i, j) /∈ S.

Similarly to other approaches, two low-rank matrices W ∈
Rm×p and H ∈ Rn×p are sought to approximate the given ma-
trix X in one-class MMMF. With observed entries being of same
value, traditional loss functions, such as squared errors, are not
applicable or meaningful. Also, without proper regularizer, it is
easy to get stuck on trivial solutions, for example, W = { 1

p}
m×p

and H = {1}n×p is a combination that perfectly fits all observed
entries since WH results in a matrix that has all entries equaling
to 1. However, this trivial solution obviously overfits the observed
values and does not generalize, and thus cannot be adopted to pre-
dict the missing values.

Instead, we follow the same manner of one-class SVM, and
introduce hinge loss with proper regularizer. In one-class SVM,
one compact ball is sought to cover all observed positive samples.
The ball is said to be compact means that its radius is minimized at
the same time when the hinge loss is minimized. Take image-tag
matrix as X ∈ Rm×n in one-class MMMF for example. In this
case, rows of W can be viewed as latent representation of images
and rows of H can be treated as latent representation of labels.
In one-class MMMF, for each image a compact ball is sought to
cover all the observed related labels, and for each label a com-
pact ball is sought to cover all the observed related images. Con-
sidering these two parts above, the one-class MMMF objective
function is designed as:

1
2
‖W‖2

F +
1
2
‖H‖2

F +C ∑
(i, j)∈ S

ξi j

s.t κ(Wi,H j)≥ 1−ξi j ∀ (i, j) ∈ S

ξi j ≥ 0 ∀ (i, j) ∈ S

(5)

where S = {(i, j)|Xi j = 1} and C is the parameter controlling the
tradeoff between hinge loss and regularizer. κ(., .) is a kernel
function. here we adopt the linear kernel, which means κ(x,y) =
〈x,y〉.

Optimization for One-Class MMMF
Here we present the optimization of equation 5 with respect

to W ∈ Rm×p and H ∈ Rn×p. Optimizing with respect to W and
H jointly is difficult due to nonconvexity. However, optimization
with respect to W or H only is convex and easy to solve. Thus,
we refer to alternative optimization approach by repeating the fol-
lowing two steps until convergence.

Step 1: Fix H, optimize W . To optimize equation 5 with
respect to W , we have:

arg min
W∈Rm×k

1
2
‖W‖2

F +
1
2
‖H‖2

F +C ∑
(i, j)∈ S

ξi j

s.t κ(Wi,H j)≥ 1−ξi j ∀ (i, j) ∈ S

ξi j ≥ 0 ∀ (i, j) ∈ S

(6)

Moreover, the optimization problem above can be further de-
composed into a set of independent subproblems, each of which
optimizes with respect to a row of W . Without loss of generality,
we consider the optimization problem with respect to ith row of
W , i.e. Wi.

arg min
Wi∈Rk

1
2
‖W‖2

F +
1
2
‖H‖2

F +C∑
i, j

ξi j

=arg min
Wi∈Rk

1
2
‖W‖2

F +C ∑
(i, j)∈S

ξi j

=arg min
Wi∈Rk

1
2
‖Wi‖2

2 +C ∑
(i, j)∈S

ξi j

s.t κ(Wi,H j)≥ 1−ξi j ∀ (i, j) ∈ S

ξi j ≥ 0 ∀ (i, j) ∈ S

(7)

The problem above is a standard convex programming prob-
lem. Actually, since the i is fixed, it reduces to a standard one-
class SVM optimization problem. When we are optimizing with
respect to Wi, the rows of H are considered as samples to be clas-
sified and the ith row of matrix X contains the corresponding la-
bels, which are either missing or positive. This can be efficiently
solved by standard optimization toolboxes. Also, many of the
techniques [16, 18] that help to speed up the conventional SVM
could be easily introduced without much modification.

Step 2: Fix W , optimize H. Similarly, the optimization with
respect to rows of H is in the same manner:

min
Hi∈Rk

C∑
j

ξ ji +
1
2
‖Hi‖2

F

s.t κ(W j,Hi)≥ 1−ξ ji f or ( j, i) ∈ S

(8)
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Algorithm 1 One-Class Maximum Margin Matrix Factorization

Require: X ∈ Rm×n with S, the set of observed entries; p, the
dimension of latent space.

1: Initialize W ∈ Rm×p, H ∈ Rn×p

2: for t = 1, ...,max iter do
3: for i = 1, ...,m do
4: Update Wi. by minimizing equation 7
5: end for
6: for i = 1, ...,n do
7: Update Hi. by minimizing equation 8
8: end for
9: end for

10: return W, H

The overall algorithm of alternative optimization is summa-
rized in Algorithm 1.

Discussion
Overall, we fix H and update all rows of W , and then fix W

and update rows of H. In each step, an optimization problem,
same as standard one-class SVM, is solved. Since different rows
of W or H can be updated independently given fixed H or W , re-
spectively, the optimization methods can be easily run in parallel
to speed up.

The algorithm is guaranteed to converge, since there is ob-
viously a lower bound for the objective function, for example 0.
Also, each of the updating steps will decrease the objective func-
tion.

Experimental Results
In order to evaluate our proposed one-class MMMF method,

we first test it on a synthetic dataset. Then one-class MMMF
is further evaluated on two types of experiments in real appli-
cations: image tag completion and street view text word recov-
ery. For image tag completion, we use public dataset: MIR-
FLICKER-25K [5]. For street view text letter recovery, we use
ICDAR2003 [12], which is a competition dataset for text robust
reading.

For the synthetic dataset, we first generate two base matri-
ces W and H, in which the elements are uniformly distributed in
[0,1]. Then we threshold matrix W ×H to generate original ma-
trix X so that partial elements in X are labeled as 1. Specifically,
Xi j is set to 1 if (WH)i j is greater than the predefined threshold.
In our implementation, the threshold is tuned so that about 25%
of elements of X are labeled as 1.

The database MIRFLICKER-25K includes 25000 images
with 38 different tags (e.g. baby, dog, flower, tree, transport, river,
flag, etc.). We use all 38 tags in our experiments and generate
matrix representation for this database. Every entry of this matrix
is either unknown or 1 while Xi j = 1 means that the ith image has
tag j, while Xi j = 1 means it is unknown. However, many images
in this dataset have a small number of tags. Thus they provide lit-
tle information about statistical correlations among different tags.
So we apply preprocessing to this dataset to exclude those images
that have fewer than 12 tags. Because of this preprocessing, the
matrix X = (xi j)m×n to be factorized has a size of 104×38.

On ICDAR2003 database, it includes 1156 street view im-

Table 1: Dimensionality of the three datasets

Dataset m n p
Synthetic 100 100 40

MIRFLICKR-25K 91 37 20
ICDAR2003 108 26 13

ages with text in each of them. We extract text in each image from
its tag file to generate original matrix X to be factorized. Beacause
we only focus on recovering semantic information in each image
based on matrix factorization, we do not distinguish lower-case
and upper-case letter in our application. In the original matrix X ,
each row represents an image while each column represents an
english letter. For example, X32 = 1 means that in the 3rd image
there is at least one letter ‘b’. So the original matrix to be factor-
ized in this case has a size of 1156× 26. The dimensionality of
matrix representation (after preprocessing) for these three datasets
is give in Table 1.

Baseline Algorithms
There are many related works that handle collaborative fil-

tering. Based on the popularity, performance and closeness to our
proposed algorithm, The proposed one-class MMMF algorithm is
evaluated against classical method: Weighted Nonnegative Matrix
Factorization (WNMF)[4]. WNMF method excludes those entries
which are masked in the original matrix from the cost function.
By masking, we can easily divide the original matrix into two
parts: training and testing.

Implementation Details and Evaluation
Now we characterize parameters and performance measures

for these methods. For all datasets mentioned above with original
matrix X ∈ Rm×n , we choose W ∈ Rm×p and H ∈ Rn×p where
p ≈ n

2 . The sizes of W and H for different datasets are shown in
Table 1.

Then we randomly mask 20% of elements in the original ma-
trix X and take them as testing set. The rest 80% of elements are
retained for training which is denoted as X t . In order to show
that our algorithm can better handle matrix with unknown en-
tries, we further randomly mask σ percent of elements in X t as
unobserved. For WNMF, the unobserved entries are treated as
negative, as many traditional algorithms do, thus each of the cor-
responding enties is replaced by 0. Finally, our input matrix to
be factorized is denoted as X∗. For WNMF, we can achieve 20%
masking by specifying the weight matrix M in the objective cost
function:

Ownm f = ||M� (X−WH)||F2 , (9)

where mi j = 0 if this element is masked for testing, while mi j = 1
if it is in the training set. The goal is to recover original X based
on X∗, where X∗ contains only 80% of original elements and σ

percent of its elements are unobserved.
For one-class MMMF, we initialize two matrices W ∈ Rm×p

and H ∈ Rn×p as Wi j ∼U [0,1], Hi j ∼U [0,1]. On all the datasets,
our experiments show that 30 iterations are sufficient for one-class
MMMF to reach convergence. Let W 1 and H1 denote the initial
matrices. Assume in the iteration k, we sequentially optimize each
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row of W k followed by each row of Hk. In order to update each
row W k

i , all the rows of Hk which correspond to non-zero entries
in X are viewed as samples for optimization. Symmetrically, to
update each row Hk

j , all the rows of W k which correspond to non-
zero entries in X are viewed as samples for optimization. We
use BFGS Quasi-Newton approach in every iteration to update
from W k, Hk to W k+1, Hk+1. Experiments show that BFGS has
the faster convergence speed when compared to other gradient
methods like DFP and Conjugate Gradient. Once the iteration
reaches convergence, we get recovered matrix X̂ as X̂ = W ×H.
And an optimal threshold value T ∗ is searched to binarize X̂ .

For one-class MMMF, different values for box constraint C
and threshold T will generate different estimates X̂ . We perform
an exhaustive search on C and T to find the best combination (C∗,
T ∗) that can maximize the F1 score in the testing set. For WNMF,
we only need to search for the optimal T ∗ that leads to the max-
imum F1 score in the testing set. Because of the randomness in
initialization and optimization, we repeat the whole factorization
process three times for both methods, at every level of σ , to obtain
three maximum F1 scores. For every σ , we calculate its corre-
sponding mean maximum F1 score mFmax

1 for all three methods.
The testing results on three datasets with different unknown por-
tions σ = 0.2, 0.25, 0.30, 0.35, 0.40 are given in Table 2. As a
visualization of Table. 2, we also present our testing results in
Fig. 2. Note, in the figure and table reporting results, OCMMMF
is short for one-class MMMF for notational convenience.

Through the results in Table 2, we can conclude that one-
class MMMF achieves higher mFpn scores in most cases when
compared to WNMF on all 3 datasets. It consistently outperforms
the WNMF method. Especially on the ICDAR2003 dataset for
word completion task, it significantly outperforms the WNMF by
about 8%.

Discussion
The experiments show one-class MMMF is favored against

the baseline algorithm in term of the mFmax
1 score. However, one-

class MMMF is much more computationally extensive compared
to WNMF. Even though we do not need to deal with joint opti-
mization in one-class MMMF to get gradients of its overall cost
functions. It still require extensive convex optimization in every
iteration when updating W k and Hk, in which we apply BFGS
for every row in W or column in H until it converge based on
the ‘samples’ in other matrix. So there is probably some space to
reduce the computational complexity.

Conclusion
In real world applications, data are missing in many infor-

mation resources. However, not being observed is not equal to
nonexistence. As one of the most popular discriminative collabo-
rative filtering methods, Maximum Margin Matrix Factorization
(MMMF) introduces the typical classification loss - hinge loss
into matrix factorization. With the observation that in some real
situations negative values cannot be observed and entries of data
matrix can only be either positive or missing, to cope with the one-
class discriminative collaborative filtering problems, we extend
the MMMF to one-class MMMF, which does not require negative
entries and is able to predict the missing entries. Experiments on
both synthetic data and real datasets show the efficacy of the pro-
posed algorithm in predicting the missing entries of data matrix
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Figure 2: Testing results on three datasets with different testing
portions

with observation restricted to positive reponses.
For future research, how to incorporate side information

into this setting to combine one-class discriminative collabora-
tive filtering and one-class content based classification might be
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Table 2: mFmax
1 scores on three datasets for OCMMMF and WNMF

Dataset Synthetic MIRFLICKER-25K ICDAR2003
σ WNMF OCMMMF WNMF OCMMMF WNMF OCMMMF

0.20 0.8007 0.8317 0.7481 0.7577 0.5962 0.6458
0.25 0.8101 0.8211 0.7439 0.7398 0.5819 0.6436
0.30 0.8022 0.8231 0.7365 0.7347 0.5636 0.6229
0.35 0.8037 0.8114 0.7147 0.7296 0.5554 0.6265
0.40 0.7751 0.7835 0.7078 0.7257 0.5517 0.6189

a promising direction. Also, it is interesting to speed up the one-
class MMMF algorithm using tricks similar to the ones proposed
by researchers for speeding up one-class MMMF.
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